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Linear electromagnetic wave scattering systems can be characterized by an impedance matrix that
relates the voltages and currents at the ports of the system. When the system size becomes greater
than the wavelength of the �elds involved, the impedance matrix becomes a complicated function
of the details of the system, in which case a statistical model, such as the random coupling model,
becomes useful. The statistics of the elements of the random coupling model impedance matrix depend
on the excitation frequency, the spectral density of the modes of the enclosed system volume, the
average loss factor (Q−1) of the system, and the properties of the coupling ports as given by their
radiation impedances. In this paper, properties of the elements of impedance matrices are explored
numerically and experimentally. These include the two-point frequency correlation functions for the
complex impedance of elements and the expected di�erence in frequencies between which impedance
values are approximately repeated. Universal scaling arguments are then given for these quantities;
hence, these results are generic for all su�ciently complicated scattering systems, including acoustic and
optical systems. The experimental data presented in this paper come from microwave graphs, billiards,
and three-dimensional cavities with embedded tunable perturbers such as metasurfaces. The data is
found to be in generally good agreement with the predictions for the two-point frequency correlations
and the frequency interval for successive repetitions of impedance matrix element values.
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1. Introduction

We consider the propagation of waves through
complicated scattering systems with a �nite num-
ber of asymptotic scattering channels coupled to
the outside world. Generically, the systems could be
three-dimensional spaces, two-dimensional billiards,
or one-dimensional graphs, and the waves could be
electromagnetic, acoustic, quantum, etc. When the
dimensions of the systems are much larger than the
wavelength of the waves propagating within, the
scattering properties become extremely sensitive to
cavity details, such as the shape of the boundaries
and the presence of internal scatterers. Because of
this sensitivity and the resulting high variability of
wave properties, these systems are referred to as
being �wave chaotic�. As a result, deterministic cal-
culations for the properties of a single realization of
such a system are di�cult to obtain, leading to the
use of statistical approaches to calculating ensemble
properties.
Random matrix theory (RMT)-based models

have emerged as especially successful at predict-
ing certain universal properties of wave chaotic sys-

tems [1�19]. One such model, the random cou-
pling model (RCM), was developed to incorporate
nonuniversal physical features that practical sys-
tems invariably have, such as coupling details of
ports or antennas [20, 21] and short orbits (also
known as direct processes) [22�24], with an RMT
description of the wave propagation within the en-
closure. The RCM allows for modeling the system,
including its ports, in terms of an impedance or ad-
mittance matrix that linearly relates the voltages
and currents appearing at the system's ports. From
these matrices, combined with knowledge of the ex-
ternal transmission systems feeding the ports, it is
possible to evaluate the system scattering matrix,
which is often of interest.
The RCM has been applied to understanding the

statistical electromagnetic properties of complex en-
closed systems for decades [25�27], and has also
been empirically veri�ed to describe acoustic scat-
tering [28]. Predictions of the RCM have been com-
pared to experimental scattering and impedance
matrices [23, 25, 29�32], admittance matrices [33],
conductance �uctuations [34], fading statistics [35],
complex time delay statistics [36, 37], and scattering
singularity statistics [38].
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One of the applications of the RCM is identifying
the underlying universal �uctuations of impedance
from experimental ensemble data, which is done by
normalizing the measured cavity impedance matrix
by the radiation impedance speci�c to the ports or
antennas used in the measurement. The radiation
impedance of an antenna characterizes how well it
couples to electromagnetic �elds in an environment
where enclosing boundaries have been removed.
This provides a speci�c baseline characterization of
the coupling at a port using that antenna. One way
to measure the radiation impedance is to put the an-
tenna in an anechoic chamber, which is equivalent
to letting the antenna radiate out to in�nity with
no re�ections, and measure the resulting scattering
parameters. The radiation impedances of the ports
are then used to normalize the actual impedance
matrix, yielding a dimensionless impedance matrix
Z that is independent of many details of the system,
allowing for comparison with universal RMT predic-
tions. In this paper, we examine the RCM normal-
ized impedance matrix obtained from experimental
data and identify characteristics of the two-point
frequency correlation functions of the real (resis-
tance R) and imaginary (reactance X) components
of the impedance matrix elements.
We then apply the knowledge of the correlation

functions to address the question: If a port of the
system presents a particular value of the complex
impedance Zt at a frequency f , what is the av-
erage frequency interval Λ before the same value
of impedance Zt, within some speci�ed tolerance,
is seen again? An example is shown in Fig. 1,
where we plot the path in the complex plane traced
by an o�-diagonal element of the RCM normal-
ized impedance matrix, Z12, over a short frequency
range. The arbitrarily chosen target impedance
value is Zt

12 = 0.082 + 0.114 i , marked by the black
cross, and the small gray circle around it repre-
sents a tolerance threshold of ϵ = 0.015. The color
bar represents the frequency di�erence δ = fa − fb
(where fb is the �rst frequency at which Z12 is
within the gray circle) normalized by a character-
istic scale corresponding to the typical Q-widths of
the modes γ = 2α∆ = 0.66 MHz. Here, α is the
dimensionless RCM loss parameter that represents
the degree of overlap of the modes (Q-width nor-
malized to the mean mode spacing), while ∆ is the
mean frequency spacing of the modes.
Empirically, we �nd that the expected frequency

interval Λ between repetitions of a target impedance
depends on the mean mode spacing ∆ of the sys-
tem, the degree of absorption α of the system, the
value of the desired target impedance Zt, and the
tolerance ϵ on the target value. We claim the scal-
ing of Λ to be signi�cant for several reasons: (i) Λ is
a new statistical observable for chaotic scattering
that plays a similar role to level-spacing statistics
for eigenfrequencies, encoding how frequency corre-
lations determine the recurrence of observable quan-
tities; (ii) Λ is directly analogous to the Poincaré

Fig. 1. Clockwise path traced by normalized Z12

in the complex impedance plane over a small fre-
quency band. The color scale corresponds to the
frequency di�erence δ = fa−fb, where fb is the �rst
frequency at which Z12 is within the gray circle of
radius ϵ = 0.015 centered on Zt

12 = 0.082 + 0.114 i .
Here, δ is normalized by a characteristic scale cor-
responding to the typical Q-widths of the modes
γ = 2α∆ = 0.66 MHz, where α is the RCM loss pa-
rameter and ∆ is the mean mode spacing. The ar-
rows on the color bar mark the frequencies at which
Z12 enters and leaves the circle. The impedance
Z12 plotted in this �gure is experimentally mea-
sured from a three-dimensional cavity with absorp-
tion α = 5.5.

recurrence time in a non-autonomous, 2 degree of
freedom, continuous time dynamical chaotic sys-
tem, and also parallels the mean �rst-passage time
in stochastic processes. Our scaling law provides a
predictive tool for how often a desired impedance
condition occurs naturally in frequency for a given
cavity or resonator, which has practical relevance
for system engineering. If, for example, one wants
to use impedance as a sensor, such as for gas con-
centration or cavity defect formation, by compar-
ing a measured impedance value with a target Zt,
then Λ would be an important quantity to con-
sider. A large recurrence interval would mean that
the impedance spectrum is smooth with only a few
and distant features, making impedance unsuitable
for such applications due to a lack of sensitivity to
perturbations. But with too small Λ, one may en-
counter issues because the impedance value natu-
rally repeats even with minor perturbations. This
is also the �rst step towards a more di�cult ques-
tion, which would be looking for repetitions not of
individual impedance elements, but of special con-
ditions on the entire Z matrix, such as impedance
matrix exceptional points. Exceptional point sen-
sors have been proposed, which take advantage of
the sublinear splitting of the eigenvalues upon per-
turbation, making them the subject of considerable
interest for a variety of sensing applications [39�41].
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Impedance matrix exceptional points have previ-
ously been shown to be identical to scattering ma-
trix exceptional points [42], so the impedance ma-
trix may serve as a useful platform to study these
and other wave scattering singularities.
In this manuscript, we �rst present the theoretical

predictions for the correlation functions and repeti-
tion interval Λ in Sect. 2. The experimental systems
used are introduced in Sect. 3, alongside an expla-
nation of how we apply the random coupling model
to the raw data and the statistical methods used in
the analysis. The results are shown and interpreted
in Sect. 4, and we conclude our work and discuss fu-
ture research in Sect. 5. In Table I in Appendix A,
we list the relevant parameters that are utilized in
this work.

2. Theory

In this section, we de�ne the quantities impor-
tant to this paper and, through simple arguments,
derive theoretical predictions to compare with our
empirical results. The frequency response of an
over-moded, multiport wave enclosure character-
ized by an impedance matrix is well captured by
the RCM. As frequency varies, so do the values of
the elements of the impedance matrix. These vari-
ations can be characterized in multiple ways. We
have considered two such characterizations. First
is the two-point frequency correlation functions
for the real and imaginary �uctuating components
of the impedance matrix elements ⟨R̃(fa)R̃(fb)⟩C ,
⟨X̃(fa)X̃(fb)⟩C , and ⟨R̃(fa)X̃(fb)⟩C , where angled
brackets with subscript C mean the two-point cor-
relation averaged over realizations. Notice that the
tilde notation, such as R̃, represents the �uctuations
about the mean value of the parameter, in this case
of R. It so happens that for any o�-diagonal ele-
ment of the RCM normalized impedance matrix,
the mean of Zpp′ is 0 + 0i , so Rpp′ = R̃pp′ and
Xpp′ = X̃pp′ (p ̸= p′). However, for the diago-
nal elements, the mean of Zpp is 1 + 0i , meaning
Xpp = X̃pp but Rpp ̸= R̃pp. We therefore suppress
the tilde notation for Xpp, Rpp′ , and Xpp′ , and keep
it only for R̃pp. The reason for looking at the cor-
relation functions of the �uctuations is to keep the
scales of the two-point frequency correlation func-
tions consistent.
General forms of two-point frequency correla-

tion functions for the �uctuations of the impedance
and scattering matrices were �rst proposed by Fyo-
dorov, Savin, and Sommers [43, 44]. Various scatter-
ing matrix correlation functions have been studied
since, often as a way to probe what is known as
the elastic enhancement factor [14, 31, 33, 45�57].
In this paper, we consider the impedance two-point
autocorrelation functions, which, to our knowl-
edge, have not been experimentally investigated
before.

Under the limiting assumptions of ideal coupling
(which we achieve through the RCM normalization
process), reciprocity (Dyson symmetry class β = 1),
and large loss (α ≫ 1, meaning that the modes
are strongly overlapping), we arrive at the reduced
expressions for the impedance two-point frequency
correlation functions for the elements of the RCM
normalized impedance matrix with condensed no-
tation, i.e.,〈
R̃pp(fa)R̃pp(fb)

〉
C
=

〈
Xpp(fa)Xpp(fb)

〉
C
=

2(RRMS)2
1

(δ/γ)2+1
, (1)

〈
R̃pp(fa)Xpp(fb)

〉
C
= −2(RRMS)2

δ/γ

(δ/γ)2+1
, (2)

〈
Rpp′(fa)Rpp′(fb)

〉
C
=

〈
Xpp′(fa)Xpp′(fb)

〉
C
=

(RRMS)2
1

(δ/γ)2+1
, (3)

〈
Rpp′(fa)Xpp′(fb)

〉
C
= −(RRMS)2

δ/γ

(δ/γ)2+1
. (4)

In these equations, δ = |fa − fb| is the di�erence
in frequency between the two points, γ = 2α∆ is
the characteristic frequency interval speci�c to the
system, and RRMS =

√
⟨(Rpp′)2⟩ is de�ned as the

standard deviation of the �uctuation of the real
component of an o�-diagonal element of the RCM
normalized impedance matrix. Note that in the case
of large α, RRMS is known to depend only on α by
the formula RRMS = (πα)−1/2 [20, 25].
The correlation functions for the diagonal ele-

ments are found to be exactly twice as large as
those of the o�-diagonal elements, and there is no
di�erence between the real and imaginary com-
ponents. The autocorrelation of any component
is peaked at zero frequency separation, while the
cross-correlation of a real component with an imag-
inary component is zero at zero frequency separa-
tion. The negative sign in (2) and (4) is a matter
of convention for the phase evolution of Z(f) [36].
Because microwave network analyzers utilize a con-
vention in which the phase decreases with increasing
frequency, corresponding to the clockwise motion of
Z(f) in the R+ iX plane seen in Fig. 1, we include
the negative sign.
In Fig. 2, we compare (1) to the correlation func-

tion of the real part of the diagonal impedance us-
ing Eqs. [10a-b] of [43] with β = 1 (reciprocity), all
κ = 1 (ideal coupling), and three di�erent α values.
We see that for large α, our equation and the ex-
pression derived by Fyodorov, Savin, and Sommers
for the two-point frequency correlation function of
the real part of the diagonal impedance elements
are equivalent. Notice that the correlation function
does not change dramatically with α, so while our
expressions are not perfect, they can function as
fair approximations even at medium to low loss and
weakly overlapping modes. This is true not only
in the case of ⟨R̃pp(fa)R̃pp(fb)⟩C , but also for the
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Fig. 2. Two-point frequency correlation function
of the real part of a diagonal impedance element
⟨R̃(fa)R̃(fb)⟩C normalized by the zero separation

correlation ⟨(R̃pp)
2⟩ as a function of δ/γ = |fa−fb|

2α∆
.

Comparison of the prediction of (1), illustrated by
the dashed black curve, and the expression derived
by Fyodorov, Savin, and Sommers in [43], repre-
sented by the colored curves corresponding to dif-
ferent choices of loss parameter α. The green curve,
which has α = 10, is indistinguishable from the
dashed black curve.

correlation function of the imaginary part of the
diagonal impedance ⟨Xpp(fa)Xpp(fb)⟩C . When it
comes to the o�-diagonal impedance, the correlation
functions are less sensitive to α, so (3)�(4) should be
even more successful approximations than (1)�(2)
at low loss.
The absence of substantial change in the two-

point frequency correlation functions with α tells
us something profound and unexpected. At small
α, the modes have a narrow Q-width relative to the
mode spacing. The correlation function over a small
frequency band should then look like the correla-
tion function of an isolated mode unin�uenced by
any neighbors, which would be a Lorentzian with
a scale of the mode Q-width γ. In Fig. 2, we see
that the correlation width is nearly the same for
overlapping as well as for non-overlapping modes.
The second statistical characterization we con-

sider, motivated by the path traced by Z(f) in the
complex plane as frequency is varied, is how often
an element of the impedance matrix comes within
a small distance ϵ of a target value Zt. If the cavity
losses are large, such that the Q-widths of modes
γ are larger than the frequency spacing between
modes ∆, the two-point frequency impedance cor-
relation functions decay in a frequency interval γ.
Thus, one can estimate that over the frequency
range of γ, the impedance value has traced a path of
length RRMS. We now imagine that the path in the
R+ iX plane, rather than being a one-dimensional
line, is broadened to a width ϵ. After N frequency
intervals of length γ, the broadened path will cover
an area N ϵRRMS. That path is con�ned approxi-
mately to a circle of radius RRMS. Equating the area
covered by the path to the area π(RRMS)2 within

a circle of radius RRMS, we determine the expected
number N of frequency intervals of length γ, needed
for the impedance value to come within ϵ of a target
value Zt within the circle, which is N = πRRMS/ϵ.
This gives a simple estimate of the typical frequency
interval needed for the impedance to come within ϵ
of a target value as Λ = πγRRMS/ϵ.
However, the target impedance Zt could be fur-

ther than RRMS from the starting impedance, and
the further the distance, the greater the increase
in the expected frequency interval. We estimate
the increase to be proportional to the ratio of the
peak of the probability density function (PDF) of
impedance P(Zpeak) to the value of the PDF at the
target impedance value P(Zt). The expected fre-
quency interval is then given by

Λ(Zt) = π
γRRMS

ϵ

P(Zpeak)

P(Zt)
. (5)

This quantity is de�ned as the average frequency
interval between two consecutive visits of the sys-
tem impedance being within distance ϵ of a given
target impedance Zt. The equation (5) can be
slightly rewritten to be more explicit by using the
high-loss approximation of RRMS, giving

Λ(Zt) = 2
√
πα

∆

ϵ

P(Zpeak)

P(Zt)
. (6)

We conclude that the frequency interval Λ scales
proportionally with the mean mode spacing ∆ and
inversely with the tolerance ϵ. The dependence on
loss, however, is more complicated, as there is a
hidden and non-trivial α dependence in the distri-
bution function P(Z). Our theory results apply in
the over-moded limit, where the spacing between
modes ∆ is much less than the typical Q-width of
the modes γ. This corresponds to the RCM loss pa-
rameter α ≫ 1. In this case, multiple modes con-
tribute to the response at any frequency, the de-
tails of the distribution of mode spacings become
unimportant, and the values of the impedance ma-
trix elements become Gaussian random variables.
We can approximate the probability ratio in this
limit (α ≫ 1) to take the form

P(Zpeak)

P(Zt)
≈

P(Zpeak)


exp

[
(Xt)2+(Rt−1)2

(RRMS)2

]
, diagonal,

exp
[
(Xt)2+(Rt)2

(RRMS)2

]
, o�-diagonal,

(7)
depending on whether it is a diagonal or o�-diagonal
element of the impedance matrix that is being con-
sidered.

3. Experimental setup and data analysis

In this section, we introduce the experimental
platforms and methods used to verify the theo-
retical predictions in Sect. 2. Our empirical data
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Fig. 3. (a) Vector network analyzer with four total
ports. Two of the ports are connected through the
red cables to the following experimental systems:
(b) a tetrahedral microwave graph (D = 1), (c) a
ray-chaotic quarter bowtie billiard (D = 2), and (d)
a three-dimensional cavity with various symmetry-
breaking elements (D = 3). Embedded tunable per-
turbers used for ensemble creation are marked in
green.

comes from three kinds of microwave systems, which
we characterize by the number of dimensions of
wave propagation D. Schematics of the systems
are provided in Fig. 3: (b) a tetrahedral graph
(D = 1) [58�61], (c) a chaotic quarter bowtie bil-
liard (D = 2) [62�68], and (d) a three-dimensional
cavity with various geometrical symmetry breaking
elements (D = 3) [69�71]. The microwave scattering
within these cavities is considered complex when the
systems are excited with waves whose wavelengths
are small compared to the system size. The inter-
ference e�ects for waves following di�erent ray tra-
jectories are then extremely sensitive to details of
the system con�guration. We use embedded tun-
able perturbers to electronically change the system
con�guration in situ in between measurements. The
tunable perturbers are illustrated in green in Fig. 3.
In a graph, we use voltage-controlled mechanical
phase shifters [57], which act as variable-length
cables, allowing us to change the interference con-
ditions at the nodes. In the billiard and three-
dimensional cavity, we use globally-biased, voltage-
controlled, varactor-loaded metasurfaces [72, 73]
that change the amplitude and phase of re�ected
waves. In the three-dimensional cavity, we also have
a mechanical mode stirrer attached to the ceiling
that can be rotated, substantially altering the wave
propagation paths. In reverberant scattering envi-
ronments, most waves will interact with these tun-
able scattering elements multiple times, allowing for
strong control over the wave scattering properties of
each system.

The systems are connected to a Keysight PNA-X
microwave network analyzer through asymptotic
channels marked in red in Fig. 3. The calibrated net-
work analyzer measures the scattering matrix Sraw

of the system and, having at least two ports, allows
for both re�ection and transmission measurements.
To investigate statistics, an ensemble is made by
measuring the same system hundreds of times with
di�erent con�gurations of the embedded perturbers.
The Sraw matrices from the network analyzer are
then converted to Zraw matrices by

Zraw = Z
1/2
0

IM×M + Sraw

IM×M − Sraw
Z

1/2
0 , (8)

where Z0 is a diagonal matrix of the characteris-
tic impedances of the scattering channels (50 Ω,
in our case), and M is the number of scattering
channels. We then calculate the universal �uctuat-
ing impedance Z with system-speci�c features nor-
malized via the formula [20, 21, 25]

Z =

(Re[⟨Zraw⟩])−
1
2

[
Zraw− i Im[⟨Zraw⟩]

]
Re[⟨Zraw⟩]−

1
2,

(9)

where ⟨Zraw⟩ is a matrix whose elements are the
ensemble averages of the elements of Zraw. In an
ensemble with a high degree of statistical inde-
pendence between the realizations, we can expect
⟨Zraw⟩ to approach the radiation impedance in the
limit of the number of realizations going to in�n-
ity, though, for practical purposes, a few hundred
realizations is almost always su�cient. The advan-
tage of using the ensemble average over the radia-
tion impedance in the normalization process is that
⟨Zraw⟩ also contains information about the short
orbits of the cavity, which are another source of
non-universal e�ects [23, 30]. An estimate of the
cavity loss α of the system can then be obtained
by simultaneously matching the 2M2 PDFs of real
and imaginary components of the RCM normalized
impedance matrix to those predicted by random
matrix theory [74, 75], given by

ZRCM = − i

π

∑
n

Wn W
T
n

ζRMT
n + iα

, (10)

where ζRMT
n is the n-th eigenvalue of an N×N ran-

dom matrix used as the Hamiltonian of the closed
system, and the vectorWn is the n-th column of the
M×N matrix which describes the coupling between
the N closed cavity modes to the M channels.
Experimentally, we made ensembles with di�er-

ent values of α by conducting measurements in dif-
ferent frequency bands, changing the overall size of
the systems, and distributing attenuators on the
bonds of a graph [32, 57, 61]. More details about
the experimental systems used in this paper are dis-
cussed in [37, 38, 42], and an example of determining
an experimental ensemble α value through the ran-
dom coupling model (RCM) normalization process
is provided in Appendix B.
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The equations presented in Sect. 2 were de-
rived with the assumption of high loss (α ≫ 1).
Because cavity loss scales with cavity size, the
dimensionality parameter D naturally separates our
ensembles into di�erent regimes. The tetrahedral
graph (D = 1) has the lowest loss with typical
α values between 0.2 and 2, depending on overall
length, frequency band, and inclusion of attenuators
on the bonds. The quarter bowtie billiard (D = 2)
has a moderate loss, with α being around 3 in the
frequency bands where the metasurfaces are most
e�ective. The three-dimensional cavity (D = 3) is
the only system for which we can get α > 4 and
maintain good tunability of our perturbers for high-
quality ensembles. We will still present data from
the D = 1 and D = 2 systems to examine how
our theory extends beyond the absorption limit for
which we expect it to be valid.
Because all diagonal elements Z11, Z22, . . . , ZMM

are statistically identical, only one of these quanti-
ties needs to be considered, and the same is true for
the o�-diagonal elements. This means that M = 2
channels are su�cient to show all the unique statis-
tics in this paper. Note that this is only because we
are using the RCM normalized impedance and is not
necessarily true for a raw impedance matrix, which
would have system-speci�c features that could be
di�erent at each port.
We use the RCM normalized impedance matrix

diagonal (Z11) and o�-diagonal (Z12) elements to
calculate the two-point frequency correlation func-
tions by calculating the correlation function for each
individual realization and then averaging those cor-
relation functions (see (1)�(4)) over the ensemble
for each frequency di�erence δ. To calculate the fre-
quency interval Λ between repeated values of Zt,
we take the total bandwidth of the ensemble, de-
�ned as the frequency band of a single realization
times the number of measurements in the ensem-
ble, and divide by the total number of unique times
|Z − Zt| ≤ ϵ over the entire ensemble. If Z is
within ϵ of Zt for multiple consecutive frequency
points, we count that as one event only. We do this
for 100 values of ϵ that are evenly spaced on a log-
arithmic scale between ϵ = 10−5 and ϵ = 10−1,
and for 241 values of Zt, for both Z11 and Z12.
The values of Zt used in this paper are Zpeak (the
value of Z for which P(Z) is maximized) and thirty
points each along eight trajectories that have angle
θ = [0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4] in the
R+ iX plane.
In Fig. 4a and c, we show the PDFs of Z11 and

Z12 from a three-dimensional microwave cavity with
absorption parameter α = 5.5. As can be seen from
the projections on the far surfaces of the panels,
P(Z11) is not symmetric in the R11 direction. In
a passive lossy system, it is required that Rpp ≥ 0,
but simultaneously ⟨Rpp⟩ = 1; hence the peak of the
PDF is shifted to smaller values and has a long tail.
The smaller the α, the closer the PDF peak shifts
towards Rpp = 0. In contrast, P(Z12) is peaked

Fig. 4. Bivariate PDFs of complex impedance Z at
port 1 of a D = 3 cavity with absorption α = 5.5.
(a) PDF of diagonal impedance Z11; projections
show the PDF is symmetric along X11 but asym-
metric along R11. (b) Top-down view of P(Z11),
where the colored lines correspond to trajectories
of target impedance Zt

11 away from Zpeak
11 along dif-

ferent angles θ = Arg(Zt
11 −Zpeak

11 ). (c) PDF of o�-
diagonal impedance Z12; projections show the PDF
is symmetric along bothX12 and R12. (d) Top-down
view of P(Z12), where the colored lines correspond
to trajectories of target impedance Zt

12 away from
Zpeak

12 along di�erent angles θ = Arg(Zt
12 − Zpeak

12 ).

exactly at ⟨Z12⟩ = 0+ 0i and is circularly symmet-
ric in the R + iX plane. Because the peak of the
PDF is not necessarily at ⟨Z⟩, we generically call
the most probable impedance Zpeak. In panels (b)
and (d) of Fig. 4, we show the trajectories of Zt

away from the Zpeak as the eight colored lines.
We also performed the same analysis on RMT nu-

merical simulations generated using (10). We create
ensembles of 600 realizations with di�erent α values
using eigenvalues ζRMT of Hamiltonians generated
from a Gaussian orthogonal ensemble (GOE) that
are of size 100000× 100000. Because RMT is a uni-
versal scattering theory, meaning it is insensitive
to system-speci�c details, agreement between our
data and RMT predictions allows us to conclude
that our results are not speci�c to just microwave
cavities but can be applied to any complicated wave
scattering systems, such as those found in optics or
acoustics.

4. Discussion

In this section, we present the statistical re-
sults from the experiments and RMT numerics
described in Sect. 3, and compare these to the
predictions derived in Sect. 2. Data from twenty-
six experimental and thirty-one RMT numerical
ensembles were prepared, but when appropriate,

S54



Universal Frequency Correlations and Recurrence Statistics. . .

Fig. 5. Two-point frequency correlation functions of complex impedance normalized by twice (RRMS)2 =
⟨(R12)

2⟩ as a function of δ/γ = |fa − fb|/(2α∆). Dashed black lines correspond to (1)�(4), while solid colored
lines are data results. (a) Experimental data from a three-dimensional cavity with absorption α = 5.5, mean
mode spacing ∆ = 0.06 MHz, and characteristic frequency scale γ = 0.66 MHz. (b) RMT numerical simulation
with absorption α = 5.5, mean mode spacing ∆ = 14.2MHz, and characteristic frequency scale γ = 156.1MHz.

only a characteristic example will be shown. Re-
member that all the results displayed refer to the
normalized universal impedance Z calculated us-
ing (9).
We �rst consider the two-point frequency corre-

lation functions, and show an example in Fig. 5.
The correlation functions have been normalized by
2(RRMS)2 = 2⟨(R12)

2⟩. In panel (a), we present ex-
perimental results from a three-dimensional cav-
ity with α = 5.5, while panel (b) has RMT nu-
merical results from a simulation with the same
loss. The correlation functions of the diagonal
element, ⟨R̃11(fa)R̃11(fb)⟩C , ⟨X11(fa)X11(fb)⟩C ,
and ⟨R̃11(fa)X11(fb)⟩C , are represented by the
dark blue, light blue, and orange curves, respec-
tively, in both panels. The correlation functions
of the o�-diagonal element, ⟨R12(fa)R12(fb)⟩C ,
⟨X12(fa)X12(fb)⟩C , and ⟨R12(fa)X12(fb)⟩C , are
represented by the purple, green, and red curves,
respectively. The dashed black lines are the ex-
pected correlation functions in the high-loss limit
using (1)�(4).
In both Fig. 5a and 5b, we see the expected cor-

relation at zero frequency separation (correlation
of diagonal element is twice that of o�-diagonal
element) as well as the correct scaling of charac-
teristic frequency γ with increasing frequency sepa-
ration δ. As the frequency separation δ/γ increases,
we see an increase in separation between the dashed
black theory predictions and the data curves. This is
to be expected since as δ increases, the correlation

functions become more susceptible to �uctuations
in the smaller number of data points available for
averaging. However, over the entire range, the cor-
relation functions of the o�-diagonal element show
better agreement with the theory. In deriving the
equations presented in Sect. 2, we make the as-
sumption that the PDF of the impedance is Gaus-
sian distributed in the R + iX plane and peaked
at the mean value. This is always true for the o�-
diagonal impedance, but only true in the case of
α → ∞ for the diagonal impedance. As can be seen
in Fig. 4a�b, the diagonal impedance PDF is peaked
away from the mean value of 1 + 0i and is not cir-
cularly symmetric. The lower the value of α, the
more the peak of the PDF moves towards Rpp = 0.
Despite the theory's assumption that we are in the
limit of high loss (α ≫ 1), it still produces a good
prediction for the two-point frequency correlation
functions for �nite α.
Next we investigate the question of the average

frequency interval Λ between repeated values of
Zt. Because Zpeak is the most common impedance
value, it stands to reason that Λ(Zt) is minimized
at Zt = Zpeak. In Fig. 6, we plot Λ(Zpeak)/(α1/2∆)
versus tolerance ϵ calculated from both experimen-
tal and RMT simulation data. If Eq. (6) is correct,
all the curves should collapse and become degener-
ate to a single line described by 2(π1/2)/ϵ.
While we do indeed see a 1/ϵ dependence for all

the curves in each panel, there is some vertical o�-
set between the curves from di�erent ensembles,
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Fig. 6. Average frequency interval Λ between repeated instances of most probable impedance Zpeak nor-
malized by α1/2∆, as a function of tolerance ϵ. Color scale corresponds to absorption parameter α.
(a, b) Λ(Zpeak)/(α1/2∆) from twenty-six experimental ensembles, in diagonal and o�-diagonal impedance
cases, respectively. (c, d) Λ(Zpeak)/(α1/2∆) from thirty-one RMT numerical ensembles, in diagonal and o�-
diagonal impedance cases, respectively.

Fig. 7. Panels (a) and (c): Frequency interval Λ(Zt) between repeated instances of |Z − Zt| ≤ ϵ = 10−2,
normalized by Λ(Zpeak) using the same tolerance. Panels (b) and (d): Ratio P(Zpeak)/P(Zt). In all panels,
the x-axis is the square di�erence between Zt and Zpeak normalized by the radiation impedance. Color bar
corresponds to the angles θ, which are the same as the colored lines in Fig. 4. Panels (a, b) show diagonal
impedance Z11, panels (c, d) show o�-diagonal impedance Z12. Data is from an experimental D = 3, α = 5.5
ensemble.

illustrated by the color scale corresponding to the
ensemble α value. We have determined two possi-
ble reasons for the spread-out nature of the curves.
When looking at the experimental data in panels
(a) and (b), it can be seen that the red curves

corresponding to ensembles with α ≥ 5 are degen-
erate, and only the blue, green, and yellow curves
fail to align with the scaling curve. This suggests
that for small absorption, there is some leftover
α dependence to Λ(Zpeak) that is not properly
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captured by (6), which assumes high loss (α ≫ 1).
However, the RMT numerical simulations in panels
(c) and (d) result in Λ(Zpeak)/(α1/2∆) curves that
seem degenerate for all α values. This implies the
issue may not lie in theory, but actually in small
inaccuracies in the ∆ value used. Mode spacing
in the RMT simulation is very well described by
the prescribed ∆, while for the experimental en-
sembles, the value of ∆ is just an approximation
calculated using Weyl's formula. As for why the
theory describes the statistical results of even low-
loss ensembles, both experimental and from RMT
simulation, it is likely because the correlation func-
tions remain qualitatively similar across all α val-
ues. Hence, the simple geometrical argument for
Λ(Zt = Zpeak) = πγRRMS/ϵ can be expected to
hold.
Having veri�ed the relationship between

Λ(Zpeak) and each of ϵ, α, and ∆, we now
look at the dependence of the repetition fre-
quency Λ on the target impedance Zt. We plot
Λ(Zt)/Λ(Zpeak) versus |Zt − Zpeak|2 in Fig. 7a
and c for diagonal and o�-diagonal impedance,
respectively. In this case, the allowed tolerance
for counting a repetition is ϵ = 10−2. The data
comes from a three-dimensional cavity with loss of
α = 5.5, and the di�erent colors correspond to the
angle θ = Arg(Zt −Zpeak). Note that these are the
same colors and angles as depicted in Fig. 4b and d
on top of the complex impedance PDFs.
In Fig. 7c, we see that Λ(Zt

12) is independent of
θ, which is expected because of the circular symme-
try of P(Z12). The eight curves in panel (c) appear
linear on this log-lin scale, which is also expected
because of the proportionality to the probability ra-
tio P(Zpeak

12 )/P(Zt
12). In (7), we predicted that the

ratio P(Zpeak
12 )/P(Zt

12) would be an inverted bivari-
ate Gaussian of the form exp[(Rt

12)
2 + (Xt

12)
2]. As

shown in panel (d), when plotted on a log-lin scale
against the di�erence squared, the curves formed by
this ratio are linear and look very similar to those
in panel (c).
However, as was shown in Fig. 4, the PDF of diag-

onal impedance Z11 is not symmetric along the real
axis. This means that both the distance from the
peak |Zt −Zpeak| and the angle θ are important to
the �nal value of Λ(Zt

11). When the angle is within
π
2 < θ < 3π

2 , the Λ(Zt
11) and P(Zpeak

11 )/P(Zt
11)

curves are concave up. In both panels (a) and (b),
the light blue curve corresponding to θ = π abruptly
stops at about |Zt−Zpeak|2 = 0.25 = 0.52. The rea-
son is that for this ensemble with a loss of α = 5.5,
there simply are virtually no occasions when the
real part of the diagonal impedance is smaller than
Rpeak

11 − 0.5 ≈ 0.4.
Panels (a, b) and (c, d) of Fig. 7 show the di-

rect relation between Λ(Zt) and P(Zpeak)/P(Zt).
Dividing the Λ(Zt)/Λ(Zpeak) curves in Fig. 7a
and 7c by the corresponding P(Zpeak)/P(Zt)
curves in Fig. 7b and 7d removes the multiple orders

of magnitude change with |Zt−Zpeak|2. This means
that when we use (6) to factor out the expected
dependence of Λ on the parameters α, ∆, ϵ, and
Zt, we go from a frequency interval that varies over
a range of 105 (combining the y-scales of Figs. 6
and 7) to a quantity that varies by only about a
factor of 2. The fact that we do not see a perfect
equality between panels (a) and (c) and (b) and (d)
of Fig. 7 can again be explained by our theory being
derived for the limiting case of high loss (α ≫ 1),
yet it works surprisingly well even for moderate to
low-loss systems (α ≈ 1).

5. Conclusions

In this paper, we have presented an experimen-
tal study of the statistics of the RCM normalized
impedance of microwave cavities. We have exam-
ined the two-point frequency correlation functions,
which agree nicely with the theoretical predictions.
We also considered the question of how far on aver-
age one must look in frequency before seeing a re-
peated value of impedance. We demonstrated that
this frequency interval Λ depends on four parame-
ters: the mean mode spacing ∆, the absorption α,
the value of target impedance Zt, and the toler-
ance ϵ on the desired impedance. Experimentally,
the mode spacing ∆ and the mode overlap α are in-
versely correlated, and it can be di�cult to tune one
without a�ecting the other, which means it cannot
be predicted whether Λ will shrink or grow based on
changes in just one of these parameters. Further, the
PDF of Z depends on α, which introduces another,
more complicated, dependence on loss to Λ. Using
random matrix theory simulations, we see statistical
results that agree well with our data. The agreement
between the experiment and RMT strongly implies
our results are applicable to any su�ciently compli-
cated wave scattering system, including those seen
in optics or acoustics. An extension of this work
is to consider not only special values of individual
impedance elements, but also special conditions on
the entire Z matrix, such as impedance matrix ex-
ceptional points, which are equivalent to scattering
matrix exceptional points.
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TABLE I

Table of important parameters used in this work. The symbol used is given in the �rst column, and the de�nition
in the second column. How that parameter is related to other parameters is given in the last column.

Parameter

symbol
De�nition

Relation to other

parameters

Zraw Raw impedance matrix Eq. (8)

⟨Zraw⟩ Ensemble average of raw impedance. For a high-quality ensemble with
many realizations, becomes nearly identical to radiation impedance
with small di�erences caused by short orbits.

N/A

Z Universal �uctuating impedance matrix, normalized to not contain sys-
tem speci�c features

Eq. (9)

ZRCM Universal �uctuating impedance matrix as predicted by the random
coupling model and RMT

Eq. (10)

Zpeak Impedance value that corresponds to the largest value of P(Z) P(Zpeak) = max[P(Z)]

Zt Target impedance value of interest N/A

ϵ Tolerance on target impedance Zt N/A

RRMS Root mean square �uctuation of the normalized impedance

RRMS =
√

⟨(Rpp′)2⟩
and at large loss

RRMS =
√

1
πα

α RCM loss parameter, quanti�es degree of mode overlap N/A

∆ Mean frequency spacing of the modes N/A

γ Mean spectral Q-width of the modes γ = 2α∆

δ Di�erence between two frequency values fa and fb δ = |fa − fb|
Λ Average frequency interval between repeated occurrences of target

impedance value Zt

Eqs. (5) and (6)

Fig. 8. Black symbols correspond to the ensemble PDFs of the real and imaginary parts of elements of the
RCM normalized impedance matrix from a three-dimensional cavity. The red lines are the PDFs of ZRCM

generated using (10) with loss parameter α = 5.5. All 12 unique (the system is reciprocal, so Zpp′ = Zp′p)
experimental PDFs are simultaneously matched to the predicted PDFs, allowing for the determination of the
cavity loss characteristic of the data.
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Appendix A:

Table of parameters

In Table I, we list the relevant parameters that
are utilized in this work.

Appendix B:

Random coupling model loss parameter

determination

In this Appendix, we demonstrate the validity of
the α values assigned to the experimental ensembles
used in this paper. We obtain a value for the loss
parameter α of an ensemble by comparing PDFs
of elements of the RCM normalized impedance ma-
trix from (9) to the PDFs of numerically generated
impedance using (10). For a system with M chan-
nels, there are 2M2 PDFs, and we simultaneously
match them all using a single α value. An exam-
ple of the three-dimensional cavity ensemble with
α = 5.5 is shown in Fig. 8.
Because this process uses an ensemble that in-

volves both cavity manipulation and a range of fre-
quencies, we are, in a sense, averaging the contribu-
tions of multiple α values. This is reasonable when
α is large, and the contributions aren't too di�erent
from each other [75]. However, since the shape and
variance of the PDFs of Z have a sensitivity to α
that scales roughly like α−1 (that is, a change of
α has more e�ect when α is small), there can be
di�culties when α < 1.
Our experimental systems with their in situ tun-

able perturbers allow us to make very high-quality
ensembles for which we can apply this process even
in cases of very low loss. See the Supplemental Ma-
terials of [37] for an example in which we simulta-
neously match all 8 impedance PDFs of an M = 2
channel graph to the RCM predicted PDFs with
α = 0.18. This method is even applicable in the
case of ultra-low loss enabled through cryogenic en-
vironments, as shown in [76].
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